Projects
On each of these missions for Navy, Army and Air Force missions, MDS engineers have striven to best support our clients in the quest to successfully manage the complexity and costs of their R&D, systems engineering and A&AS efforts. Be it scientific/algorithmic software design, M&S of Integrated Air Defense Systems (IADS), consulting on directed energy experimentation strategic paths, demonstrating technologies and analysis tools for air dominance in contested and A2/AD (anti-access, area denial) environments through a Simulation-Based R&D (SBR&D), or the programmatic support to U-2 modernization programs, we have attempted to understand the intricate relationships between science/research, new technology, programmatic processes, and the people involved. Our approach is based on the premise that the systems integration methodology can be most effectively applied when the various elements in a mission enterprise are viewed and defined iteratively, that is, critically reviewed, prototyped, balanced, and in turn re-applied to the schema. Only with such adherence to process and detail can truly systemically common environments and applications be realized.
AFSIM - Advanced Framework for Simulation, Integration and Modeling

AFRL M&S
Advanced Framework for Simulation, Integration and Modeling (AFSIM)
AFSIM M&S: Air/Ground/Space - EW/ISR - UAV/SUAS-Hypersonic. MDS develops systems and applies M&S platforms and frameworks such as AFSIM, MatLab, LEEDR as well as integrated capabilities of legacy M&S environments for AFRL to analyze and quantify physical, mission and campaign level aspects of technological applications. The work includes analyzing various ISR technology capabilities, related mission survivability, susceptibility, lethality and overall mission effectiveness. Areas of concern addressed or anticipated:
- Engagement/mission effectiveness in adverse and nonadverse;
conditions (air-to-air, air-to-ground, kinetic, nonkinetic,
defensive, survivability);
- Sensor performance (time track, area, FOV, distance, time,track, on-
board processing;
- Logistic considerations (reliability, availability, basing);
- Technologies/Platforms modeled: Attritable aircraft. Reconfigurable
aircraft, Unique sensor tech, Denied environment communications,
Cyber effects on ISR, Space systems, Hypersonic systems, Ground-
based ISR, Sea-based ISR
Development efforts include open-architecture software engineering, data manipulation/reduction, database development/management/integration, software Graphical User Interface (GUI)/other interface design and development, model operating environment HW/SW integration and testing, and integration of various DoD and commercial third party applications. MDS assists in the verification and validation of various components associated with the complete MS&A toolset developed for any given project.

NASA Tropical Rainfall Measuring Mission (TRMM)
MDS personnel supported the NASA Tropical Rainfall Measuring Mission (TRMM) scientific weather algorithms, data repository and associated ground storage architecture efforts. TRMM (a sub program of the Earth Observation System,)science team in sensor (Special Sensor Microwave/Imager (SSM/I)) data algorithms development and the development of related ground segment data storage and manipulation capabilities. TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM Visible and Infrared Scanner (VIRS) Level 1B Calibrated Radiance Product (1B01) contains calibrated radiances and auxiliary geolocation information from the five channels of the VIRS instrument, for each pixel of each scan.

Space/Cyber/Air Exercise/Wargame Support, AFSPC
MDS supports the Air Force Space Command (AFSPC, A9, Peterson AFB) in developing and refining exercises and related wargamming capabilities in support of, for example, Joint Force Space Component Command (JFSCC ) construct directed by CDRUSSTRATCOM. Work involves interacting with AF and joint parties on multi-disciplined exercise supportive discovery , expert analysis and the development of Lessons Learned articles to aid in continual refinement of the programs. Such exercises as GLOBAL THUNDER (GT) and GLOBAL LIGHTNING (GL) are monitored and documented to better understand the type of information most widely and effectively processed, determine best practice mission elements and recommend enhancements. simulation and flight test activities to discover and develop advanced technologies and system designs. MDS is a subcontractor on the program.

Nuclear Command and Control Communications (NC3)
MDS personnel provide in-depth system engineering, operational analysis and related Modeling and Simulation (M&S) of Air Force NC3 reliant environments. Functional areas of focus include communications performance across sustaining engineering processes and procedures, implementation and fielding measures, cyber security, survivability and vulnerability assessment and mitigation, metrics development, analysis, tracking, and configuration management and control of AF nuclear capabilities. AFGSC directly executes and complies with Nuclear Command and Control Systems Technical Performance Criteria, prioritization of C3 nodes and systems for High Altitude Electromagnetic Pulse protection, critical nuclear C2 equipment and facilities, lead command responsibilities identified in AFPD 10-9 Lead Command, AFI 10-901 Operating Units and Lead Command Responsibilities, AFI 13-5 550 Air Force Nuclear Command and Control, AFI 10-601 Operational Capability Requirements Development
